If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56x^2=64x
We move all terms to the left:
56x^2-(64x)=0
a = 56; b = -64; c = 0;
Δ = b2-4ac
Δ = -642-4·56·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-64}{2*56}=\frac{0}{112} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+64}{2*56}=\frac{128}{112} =1+1/7 $
| X+1+x+55=180 | | 4x-1+6x+8+73=180 | | 22x+1=9x-3 | | 42-3x+9x-3=180 | | 22x+1+9x-3=180 | | 3.2g*2.6=-23 | | 3.2g*2.6=23 | | 2^x=5^3x-1 | | 2x+(4x+5)=(2x+4x)+5=6x+5 | | (x+4)=(2x+5)128 | | Y-2=-3(x-3) | | 7(2x+2)=49 | | 42.x=20=5 | | (x+4)(2x+5)=128 | | x+4÷2=x-1 | | x(3+2x)=(6x-7) | | Xx2/3=500 | | 3^x+1-3x=162 | | 4m+28=2m-16 | | -m+8=-11 | | -(4-x)=3x+18 | | 10-5(x-1)=100 | | 2y+2=2(2y-9) | | 15x-5(x-2)=20 | | X^2+3x+3=180 | | 5x=2(3x+4)-15 | | 6x+10=2x+10=180 | | -x+4(1+5x)=156* | | 4y2+8y+7=4 | | (3^v/3^-v)=(1/243) | | l5l=-5 | | p/4=21 |